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SUMMARY

Protein O-GlcNAcylation is an essential reversible
posttranslational modification in higher eukaryotes.
O-GlcNAc addition and removal is catalyzed by
O-GlcNAc transferase and O-GlcNAcase, respec-
tively. We report the molecular details of the interac-
tion of a bacterial O-GlcNAcase homolog with three
different synthetic glycopeptides derived from
characterized O-GlcNAc sites in the human pro-
teome. Strikingly, the peptides bind a conserved
O-GlcNAcase substrate binding groove with similar
orientation and conformation. In addition to exten-
sive contacts with the sugar, O-GlcNAcase recog-
nizes the peptide backbone through hydrophobic
interactions and intramolecular hydrogen bonds,
while avoiding interactions with the glycopeptide
side chains. These findings elucidate the molecular
basis of O-GlcNAcase substrate specificity, explain-
ing how a single enzyme achieves cycling of the
complete O-GlcNAc proteome. In addition, this
work will aid development ofO-GlcNAcase inhibitors
that target the peptide binding site.

INTRODUCTION

Posttranslational modification of serines/threonines on intracel-

lular eukaryotic proteins with O-linked N-acetylglucosamine

(O-GlcNAc) is involved in numerous cellular processes such as

transcription, cell cycle progression, and signal transduction

(Hart et al., 2007; Love and Hanover, 2005). More than 1,000

proteins are known to be O-GlcNAcylated, and crosstalk with

protein phosphorylation is believed to be extensive (Wang

et al., 2010). Reversible protein O-GlcNAcylation is achieved

by the action of two enzymes, O-GlcNAc transferase (OGT)

and O-GlcNAcase (OGA). No precise O-GlcNAcylation

sequence motif (sequon) has so far been defined, although

promising site mapping data/tools have recently been reported

(Chalkley et al., 2009; Wang et al., 2010; Zachara and Hart,

2004). OGT possesses an unusual N terminus, consisting of up

to 13.5 tetratricopeptide repeats (TPRs) that are thought to

play a role in recognition of intact protein substrates (Clarke

et al., 2008; Iyer and Hart, 2003; Lubas and Hanover, 2000).

Although recent studies have reported the structure of a bacterial

OGT homolog (Clarke et al., 2008; Martinez-Fleites et al., 2008)
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and the structure of hOGT in complex with a peptide (Lazarus

et al., 2011), the molecular mechanisms through which these

TPRs contribute to selectivity of O-GlcNAc transfer are not yet

understood.

The enzyme that removes O-GlcNAc, OGA, is a 103 kDa

enzyme with two domains: an N-terminal hydrolase catalytic

domain belonging to CAZy family GH84 (Henrissat and Davies,

1997) and a C-terminal domain that has been proposed to

possess histone acetyltransferase activity (Gao et al., 2001;

Toleman et al., 2004). Although human OGA (hOGA) can be ex-

pressed and purified yielding samples suitable for biochem-

ical studies, attempts to crystallize the protein have so far failed.

We recently used an apparent OGA homolog fromC. perfringens

(CpOGA) to provide insights into the OGA structure (Rao et al.,

2006), in parallel with a study on a similar enzyme fromB. thetaio-

taomicron (Dennis et al., 2006). These structures have identified

the active site, which is almost fully conserved with hOGA, and

have revealed the molecular details of the interaction with the

GlcNAc sugar (Dennis et al., 2006; Rao et al., 2006). Complexes

of these enzymes with widely used inhibitors of hOGA have facil-

itated structure-based design of the potent and selective thiazo-

line/GlcNAcstatin-based hOGA inhibitors (Dorfmueller et al.,

2010; Yuzwa et al., 2008). Strikingly, both these bacterial

enzymes were shown to possess O-GlcNAcase activity

toward a broad spectrum of O-GlcNAc proteins in human cell

lysates (Dennis et al., 2006; Yuzwa et al., 2008). Similar to

OGT, it is not clear whether hOGA possesses a (glyco)peptide

sequence preference, or how the enzyme binds glycopeptides

and catalyzes their O-GlcNAc removal. Thus, the currently avail-

able structural information for OGT and OGA does not explain

the molecular mechanisms of their interactions with protein

substrates, and this limits our understanding of regulation of

O-GlcNAc turnover and cycling rates. We investigated how

OGA interacts with glycopeptide substrates, revealing that intra-

molecular interactions in the substrate may affect binding to the

OGA active site, and elucidating how OGA achieves O-GlcNAc

removal from O-GlcNAc sites in a sequence-independent

manner.

RESULTS AND DISCUSSION

O-GlcNAcaseGlycopeptideHydrolysis Is Independent of
Peptide Length
Although the structure of human OGA (hOGA) is not available,

high-resolution structures of a homologous protein, NagJ, from

C. perfringens have been reported, including complexes with

the hOGA inhibitors PUGNAc (Rao et al., 2006) andGlcNAcstatin

(Dorfmueller et al., 2006). Although it is unclear whether CpOGA
–178, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 173
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Figure 1. OGA Binds Different O-GlcNAc Glycopeptides with Similar Conformation but Different Affinities

(A) Origin and sequence ofO-GlcNAc peptides. The sequence of the longest peptides used is given, with residues observed in the crystal structure highlighted by

colored boxes, and the shorter peptides indicated by brackets.
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Table 1. Hydrophobic Stacking Interactions of Tyr69 Are Essential for Substrate Binding by hOGA

TAB1 Peptide hOGA Peptide p53 Peptide p53 Peptide

PVSVPYS(O-GlcNAc)SAQSTS VAHS(O-GlcNAc)GAK VDS(O-GlcNAc)TPG QLWVDS(O-GlcNAc)TPPPG

Y69S >4,000 >4,000 3,400 ± 500 290 ± 20

Y69K >4,000 >4,000 >4,000 350 ± 20

Y69Q 3,600 ± 300 >4,000 >4,000 170 ± 40

Y69F 1,100 ± 60 1,200 ± 110 2,700 ± 400 53 ± 5

Wild-type 940 ± 80 790 ± 40a 1,300 21 ± 3

Tyr69 in human OGAmay participate in hydrogen bonding with the catalytic aspartate (Asp175) as well as providing a stacking platform for the�1/�2

peptide bonds in the substrate. The Y69S mutation disrupts both these interactions, the Y69K and Y69Q mutants cannot participate in pi-pi stacking,

and Y69F abolishes the hydrogen bond. Point mutations were introduced in hOGA, and the Michaelis constant (KM, given in mM) was determined for

several peptide substrates.
aSchimpl et al., 2010.
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is a physiological OGA, it shows significant in vitroO-GlcNAcase

activity on O-GlcNAc proteins in lysates from human cell lines

and possesses a putative substrate-binding groove conserved

with hOGA (Rao et al., 2006; Schimpl et al., 2010). Here we report

thatCpOGA, like hOGA (Schimpl et al., 2010), possesses activity

toward synthetic glycopeptides derived from validated

O-GlcNAc sites in the human proteome, namely p53 (Ser149

[Yang et al., 2006]), TAK1-binding protein 1 (TAB1, Ser395

[Schimpl et al., 2010]), and hOGA itself (Ser405 [Lazarus et al.,

2006]) (Figure 1). The Michaelis constants (Km) of these glyco-

peptides are consistently lower for CpOGA and correlate with

the values observed for hOGA (r = 0.91; see Figure S1 available

online), suggesting that the bacterial enzyme is a suitable model

for understanding hOGA-substrate interactions. Interestingly,

there is no correlation between Km for either enzyme and glyco-

peptide length, suggesting that the range inKms observed for the

different peptides (3-470 mM forCpOGA, 21-6,300 mM for hOGA;

Figure 1B) must stem from structural/sequence properties near

the O-GlcNAc site.

OGA Binds Different O-GlcNAc Peptides with Similar
Conformations
To investigate the molecular basis of this substrate specificity,

we exploited the catalytic acid mutant of CpOGA, D298N, which

is inactive yet unaffected in its ability to bind substrate (Rao et al.,

2006). We generated an alternative CpOGA crystal form with

a highly accessible active site (see Figure S2) and determined

the structures of CpOGA D298N in complex with the p53-,

TAB1-, and hOGA-derived O-GlcNAc peptides. Synchrotron

diffraction experiments resulted in clear unbiased electron

density difference maps that defined the conformations of all

three glycopeptides (Figure 1C). These complexes define the

molecular basis of how OGA recognizes both the sugar and
(B) Km of glycopeptide substrates for hOGA (displayed by filled bars [values for th

et al., 2010]) and CpOGA (unfilled bars, right y axis) as determined by subs

(see Experimental Procedures for details).

(C) Conformation of O-GlcNAc peptides bound in the active site of CpOGA as de

carbons (TAB1 peptide, yellow; hOGApeptide, green; p53 peptide, orange), with t

density (i.e., before addition of any glycopeptide model) is shown in gray (contou

(D)O-GlcNAc peptides (sticks) in complex withCpOGAD298N (surface represent

shading of identical residues on the molecular surface. The catalytic acid Asp29

residue numbers for hOGA given in brackets.

See also Figures S1 and S2.
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protein components of physiologically relevant substrates. The

O-GlcNAc sugar occupies the same position in all three struc-

tures (maximum atomic shift of 0.2 Å). It is tethered by extensive

hydrogen bonding with residues that are identical between

CpOGA and hOGA (Figure 1D) and adopts the 1,4B boat confor-

mation predicted from mechanistic studies and observed in

complexes with pseudosubstrates (Macauley and Vocadlo,

2010; Macauley et al., 2005; Rao et al., 2006). Compatible with

the proposed substrate-assisted catalytic mechanism, the

carbonyl oxygen approaches the anomeric carbon to within

3.0 Å, poised for nucleophilic attack and in-line displacement

of the glycosidic oxygen (angle of 164�).

Glycopeptide Substrate Recognition Involves Backbone
Contacts
Strikingly, the backbones of all three glycopeptides run in the

same direction (Figure 1D), together defining the �4 through +3

subsites, and adopt similar conformations near the O-GlcNAc

site (maximumCa shift of 1.8 Å for the�2 to+1subsites).Notably,

all side chains point away from the surface of the enzyme (apart

from Trp146 in the p53 peptide, which appears to stack with

Asn298 ofCpOGAD298N), explaining how a single OGA enzyme

is able to recognize >1,000 O-GlcNAc proteins. Hydrophobic

stackingof the solvent-exposedTyr189 (Tyr69 in hOGA) aromatic

side chain with the�1 and�2 peptide bonds contributes amajor

amount (�30% of the buried surface) of the interaction between

the enzyme and the peptide component of the glycopeptides

(Figure 1D). To test the contribution of this interaction to substrate

binding, we mutated the corresponding Tyr69 in the human

enzyme to Ser, Lys, Gln, and Phe and determined the Km values

for several substrateO-GlcNAc peptides (Table 1). Only the Y69F

mutant shows no loss in activity, indicating that the hydrophobic

stacking interaction is essential for OGA activity.
e three shortest hOGA- and TAB1-derived peptides reproduced from Schimpl

trate competition assay with error bars representing the error of curve-fit

termined by X-ray crystallography. Peptides are shown as sticks with colored

heGlcNAc sugar highlighted by pink carbons. Unbiased jFoj�jFcj,Fcalc electron

red at 2.25 s). Intramolecular hydrogen bonds are shown by dashed lines.

ation). Sequence conservation between hOGA andCpOGA is indicated by blue

8 (mutated to Asn) and the conserved Tyr198 are labeled, with corresponding

–178, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 175



Table 2. Intramolecular Hydrogen Bonds Stabilize the Substrate

Conformation and Reduce the Km for hOGA

TAB1 Peptide

(Ser395)

p53 Peptide

(Ser149)

Original

sequence

VPYS(O-GlcNAc)SAQ QLVDS(O-GlcNAc)TPPPG

KM (hOGA) 4,100 ± 300 mM 21 ± 2 mM

Altered

sequences

VPHS(O-GlcNAc)SAQ QLVVS(O-GlcNAc)VPPPG

KM (hOGA) 810 ± 140 mM 3,700 ± 900 mM

QLVVS(O-GlcNAc)TPPPG

KM (hOGA) 1,800 ± 200 mM

The contribution of intramolecular hydrogen bonds toward substrate

binding was probed by introducing a potential hydrogen bond donor in

the sequence of the TAB1 peptide. For the p53 peptide, the hydrogen

bond was disrupted by replacing either the donor or the acceptor with

isosteric aliphatic amino acids (highlighted in boldface and underscored).
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Intramolecular Hydrogen Bonds Affect Substrate
Conformation and Km

All three glycopeptides adopt a ‘‘V-shaped’’ conformation that

allows the sugar to penetrate the OGA active site. Interestingly,

for two of the peptides, this conformation appears to be stabi-

lized by intramolecular hydrogen bonds (Figure 1C). The hOGA-

derived glycopeptide forms a hydrogen bond between the histi-

dine in the �1 subsite and the backbone carbonyl oxygen of the

O-GlcNAc serine (Figure 1C). For the p53-derived glycopeptide,

a hydrogen bond is observed between the aspartic acid in the�1

subsite and the threonine in the +1 subsite (Figure 1C). Such in-

tramolecular interactions may stabilize the OGA-bound confor-

mation of these glycopeptides, explaining the significantly lower

Kms compared to the TAB1-derived peptide. We tested this

hypothesis by designing glycopeptide sequences that either dis-

rupted (in case of the p53-derived peptide) or introduced (in case

of the TAB1-derived peptide) such intramolecular interactions

(see Table 2). Indeed, introducing a hydrogen bond acceptor in

the TAB1 peptide leads to a 5-fold decrease in Km for hOGA,

whereas disrupting the hydrogen bond in the p53-derived

peptide, either by removing the hydrogen bond donor or

acceptor, leads to an 85-fold increase in Km. Thus, although

OGA substrate recognition does not appear to involve direct

recognition of specific residues proximal to the O-GlcNAc site,

subtle conformational effects appear to tune substrate recogni-

tion. It is possible that sequence-dependent stabilization of

a specific backbone conformation around the O-GlcNAc site

could give rise to differential persistence/cycling rates for indi-

vidual O-GlcNAc sites in the human proteome.

O-GlcNAcylation of p53 Involves Limited
Conformational Change around the Acceptor Serine
There are currently no available structures of O-GlcNAc glyco-

proteins, and O-GlcNAc-sites on structurally characterized

proteins appear to reside in disordered/structurally undefined

regions, limiting our understanding of the conformational

changes induced by protein O-GlcNAcylation, or how these

proteins would interact with OGA/OGT. A notable exception is

the tumor suppressor protein p53, where the reported Ser149

O-GlcNAc site resides in a loop that is fully defined in the crystal
176 Chemistry & Biology 19, 173–178, February 24, 2012 ª2012 Else
structure of the p53 DNA binding domain (Cho et al., 1994).

Ser149 lies at the tip of this loop, projecting out into the solvent.

Comparing the structure of this loop in the p53 DNA binding

domain structure with the glycosylated form reported here, it is

apparent that the overall trajectory of the loop is approximately

conserved between the two conformations of the peptide (Fig-

ure 2A; average Ca shift of 2.2 Å), although a number of side

chain flips are observed (in particular Trp146). This superposition

can also be expanded to the CpOGA and p53 proteins, yielding

a model of an O-GlcNAcase-glycoprotein substrate complex

(Figure 2B), with p53 and its Ser149 loop occupying the OGA

putative substrate binding site. Further work will be needed to

establish how regions beyond the immediate vicinity of the

O-GlcNAc site will contribute to the interaction of OGA with the

full p53 DNA binding domain.

Different OGA Inhibitors Display Varying Levels
of Peptide Mimicry
The three most potent and widely used OGA inhibitors are the

transition state mimics PUGNAc (Haltiwanger et al., 1992) and

GlcNAcstatin (Dorfmueller et al., 2010), as well as the NAG-thia-

zoline derivatives that mimic the oxazoline reaction intermediate

(Macauley et al., 2005; Yuzwa et al., 2008). Thiazolines, such as

Thiamet-G, only occupy the sugar pocket, whereas PUGNAc

and GlcNAcstatin contain additional substituents mimicking

the aglycon. Comparison with the CpOGA-glycopeptide

complexes reported here reveals that these phenyl moieties in

fact occupy the +1/+2 subsites accommodating the glycopep-

tide backbone (Figure 2C). Since the use of PUGNAc and

the thiazolines in probing the role of O-GlcNAc in modulating

insulin sensitivity has yielded contradictory results (Macauley

et al., 2008; Vosseller et al., 2002), further investigation is

required to establish whether the different binding modes of

these O-GlcNAcase inhibitors may explain the discrepancies

between their effects in vitro.

Conclusions
To our knowledge, this work reports the first structures of an

enzyme of theO-GlcNAcase family in complexwith glycopeptide

substrates. Despite carrying different sequences, the glycopep-

tides adopt similar conformations in the active site. Crucially,

while O-GlcNAcase does interact with the glycopeptide

substrate backbone through specific enzyme side chains, the

glycopeptide substrate side chains face away from the enzyme’s

binding cleft, explaining how a single enzyme can target

a plethora of O-GlcNAc proteins. However, specific intramolec-

ular interactions in the glycopeptide may predispose certain

amino acid sequences for a conformation that is compatible

with the O-GlcNAcase binding cleft. This work will underpin

a mechanistic interpretation of differential cycling rates of sites

in the O-GlcNAc proteome and facilitate development of inhibi-

tors that not only target the sugar binding pocket, but also the

peptide binding groove.

SIGNIFICANCE

Protein O-GlcNAcylation is an essential and reversible

glycosylation event in higher eukaryotes, where hundreds

of intracellular proteins are O-GlcNAcylated. O-GlcNAc
vier Ltd All rights reserved



Figure 2. Comparison of Glycopeptide Binding with the Native p53

Conformation and Inhibitor Complexes

(A) Superposition of the p53-derived glycopeptide structure as observed in the

complex with CpOGA D298N (orange and pink sticks) with the corresponding

region of the p53 DNA binding domain crystal structure (Cho et al., 1994) (blue

sticks and cartoon; Protein Data Bank ID 1tup).

(B) Macromolecular model of CpOGA (gray) and the p53 DNA binding domain

(blue) in surface representation.

(C) Comparison of substrate and inhibitor binding modes (divergent stereo

image). CpOGA (gray sticks) is shown in complex with the hOGA-derived

substrate glycopeptide (green and pink sticks), CpOGA-GlcNAcstatin G

(Dorfmueller et al., 2010) (orange sticks), and with the thiazoline-derivative

thiamet-G (blue sticks, obtained by superposition with the GH84 enzyme from

B. thetaiotaomicron; Protein Data Bank ID 2vvn) (Yuzwa et al., 2008).
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addition and removal is catalyzed by O-GlcNAc transferase

and O-GlcNAcase, respectively. How a single pair of

enzymes achieves cycling of the complete O-GlcNAc pro-

teome is one of the key questions in the field. We report the

molecular details of the interaction of a bacterial O-GlcNA-

case with glycopeptide substrates, using three synthetic O-

GlcNAc peptides matching established O-GlcNAc sites in

the human proteome. In the 3D structures, we observe

recognition of the sugar moiety as well as sequence-inde-

pendent interactions with the peptide backbone, thus eluci-

dating the molecular basis of the broad substrate specificity

of the O-GlcNAcase enzyme. We report some influence of

the peptide sequence directly surrounding the modification

site; intramolecular hydrogen bonding within the peptide

facilitates the binding to the enzyme. Peptides capable of

forming such interactions are better O-GlcNAcase

substrates in vitro, and we hypothesise that the cycling

rate of individual O-GlcNAc sites in vivo may vary depending

on the surrounding protein sequence. Finally, this work will

aid development of O-GlcNAcase inhibitors that target the

peptide binding site.

EXPERIMENTAL PROCEDURES

Glycopeptide Synthesis

Microwave-assisted solid phase peptide synthesis was performed with a CEM

Liberty automated peptide synthesizer on low load Rink amide MBHA resin
Chemistry & Biology 19, 173
100-200 mesh (Novabiochem) using standard Fmoc chemistry protocols on

a 0.05 mmol scale. The 3,4,6-triacetyl-O-GlcNAc-Fmoc-Ser-OH building

block was synthesized are described previously (Schimpl et al., 2010). All

peptides were N-terminally acetylated and C-terminally amidated, and were

purified via high-performance liquid chromatography.

CpOGA Expression

The previously reported pGEX6P1-CpOGA31�624 construct (Rao et al., 2006)

was truncated toCpOGA31�618 by site-directed mutagenesis, and point muta-

tions were introduced using the following oligonucleotide primers:

618stop 50-caagaagctttaagttgagatttaacattaatatg 50-catattaatgttaaatctc
aacttaaagcttcttg-30

D298N 50-gcaatctattgggataatattcaagataagag 50-ctcttatcttgaatattatcccaat
agattgc-30.

Recombinant CpOGA was expressed as a glutathione S-transferase (GST)

fusion in E. coli strain BL21(DE3)pLysS (Rao et al., 2006) and purified by gluta-

thione sepharose affinity chromatography prior to proteolytic cleavage of the

GST tag with PreScission protease. After desalting by dialysis, the protein

was subjected to cation exchange chromatography on Q sepharose in

50 mM Bis-Tris (pH 6.4) with a linear 0-0.5 M NaCl gradient, and size exclusion

chromatography on Superdex 75 resin in 25 mM Tris (pH 8.0), 150 mM NaCl.

Crystallization and Structure Determination

CpOGA D298N was concentrated to 35 mg/ml in 25 mM Tris/HCl (pH 8.0) and

crystallized from0.175MCdSO4and0.6Msodiumacetate (pH7.5) usingsitting

drop vapor diffusion. Glycopeptide complexes were achieved through soaking

with 10 mM glycopeptide (see Schimpl et al., 2010) for glycopeptide synthesis)

for 1-2 hr prior to cryoprotection with 20% glycerol in mother liquor. Diffraction

data were collected at the European Synchrotron Radiation Facility (Grenoble,

France) beam line ID14-4 and at Diamond Light Source (Didcot, UK) I03 (Table

S1). Crystals belonged to space group P61 and contained one molecule per

asymmetric unit, with 72%solvent content. The structurewas solvedbymolec-

ular replacement, using the GlcNAcstatin C-complex of CpOGA as a search

model (Protein Data Bank ID 2J62), followed by iterative model building with

COOT (Emsley and Cowtan, 2004) and refinement with REFMAC5 (Murshudov

et al., 1997) using 2%of reflections as an Rfree test set. Table S1 gives details of

the data collection, processing, and refinement statistics.

hOGA Expression and Purification

The coding sequence for full-length human OGA was cloned into pEBG6P.

Mutations were introduced using the following oligonucleotide primers:

Y69F 50-gtggtggaaggatttaaaggaagaccttggg 50-cccaaggtcttcctttaaatcctt
ccaccac-30

Y69K 50-gtggtggaaggaaagaaaggaagaccttggg 50-cccaaggtcttcctttctttcctt
ccaccac-30

Y69Q 50-gtggtggaaggacagaaaggaagaccttggg 50-cccaaggtcttcctttctgtcctt
ccaccac-30

Y69S 50-gtggtggaaggatcgaaaggaagaccttggg 50-cccaaggtcttcctttcgatcctt
ccaccac-30.

Protein was expressed in transiently transfected HEK293 cells and purified

via glutathione sepharose affinity chromatography.

Enzymology

hOGA and CpOGA glycopeptide hydrolysis assays were carried out as

described previously (Dorfmueller et al., 2006; Schimpl et al., 2010) using mul-

tisubstrate enzyme kineticswith the fluorigenic pseudosubstrate 4MU-GlcNAc

as the reporter substrate. Briefly, initial rates of hydrolysis of 4MU-GlcNAc

were determined in the presence of increasing concentrations of glycopeptide,

and the Michaelis constant of the competing substrate (Km
0 ) was determined

using the following equation:

yi

y0
=

1+
Km

S

1+
Km

S

�
1+

S0

K0
m

�;
–178, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 177
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wherein vi/v0 is the relative activity in the presence of inhibitor,KM andS are the

Michaelis constant and substrate concentration of the reporter substrate, and

S0 is the concentration of glycopeptide. Reactions were performed at 37�C in

50 mM citrate-phosphate buffer (pH 7.4) and 0.1 mg/ml BSA. Experiments

were performed in triplicate, and data were analyzed and plotted with Graph-

Pad PRISM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and one table and can be found

with this article online at doi:10.1016/j.chembiol.2012.01.011.
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